天天快资讯丨欧几里德几何的多目标优化自适应进化算法——AGE-II
1.AGE-II
M. Wagner and F. Neumann, A fast approximation-guided evolutionary multi-objective algorithm, Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, 687-694.一种快速近似引导的进化多目标算法
2.AGE-MOEA
(资料图片仅供参考)
A. Panichella, An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization, Proceedings of the Genetic and Evolutionary Computation Conference, 2019.一种基于非欧几里德几何的多目标优化自适应进化算法
3.A-NSGA—III
H. Jain and K. Deb, An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II:Handling constraints and extending to an adaptive approach, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.一种基于参考点的非支配排序方法的进化多目标优化算法,第二部分:处理约束并扩展到自适应方法
4.ARMOEA
An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 609-622.一种基于指标并且具有参考点好的通用性的多目标进化算法。
5.BCE-IBEA
M. Li, S. Yang, and X. Liu, Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665.帕累托或非帕累托:多目标优化中的双准则演化
6.BCE-MOEA-D
M. Li, S. Yang, and X. Liu, Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665.帕累托或非帕累托:多目标优化中的双准则演化
7.BiGE
M. Li, S. Yang, and X. Liu, Bi-goal evolution for many-objective optimization problems, Artificial Intelligence, 2015, 228: 45-65.多目标优化问题的双目标演化
8.CA-MOEA
Y. Hua, Y. Jin, K. Hao, A clustering-based adaptive Evolutionary algorithm for multiobjective optimization with irregular Pareto fronts, IEEE Transactions on Cybernetics, 2018.一种基于聚类的多目标优化自适应进化算法
9.CCMO
Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2020.约束多目标优化问题的协同进化框架
10.C-MOEA-D
H. Jain and K. Deb, An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: Handling constraints and extending to an adaptive approach, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.一种基于参考点的非支配排序方法的进化多目标优化算法,第二部分:处理约束并扩展到自适应方法。
11.CMOEA-MS
Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, Balancing objective optimization and constraint satisfaction in constrained evolutionary multi-objective optimization, IEEE Transactions on Cybernetics, 2020在约束进化多目标优化中平衡目标优化和约束满足。
12.CMOPSO
X. Zhang, X. Zheng, R. Cheng, J. Qiu, and Y. Jin, A competitive mechanism based multi-objective particle swarm optimizer with fast convergence,Information Sciences, 2018, 427: 63-76. 一种基于竞争机制的快速收敛多目标粒子群优化器
13.CPSMOEA
J. Zhang, A. Zhou, and G. Zhang, A classification and Pareto domination based multiobjective evolutionary algorithm, Proceedings of the IEEE Congress on Evolutionary Computation, 2015, 2883-2890.一种基于分类和帕累托支配的多目标进化算法
14.CSEA
L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, A classification based surrogate-assisted evolutionary algorithm for expensive many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018.一种基于分类的代理辅助进化算法,用于昂贵的多目标优化
15.C-TAEA
K. Li, R. Chen, G. Fu, and X. Yao, Two-archive evolutionary algorithm for constrained multi-objective optimization, IEEE Transactions on Evolutionary Computation, 2018, 23(2): 303-315.约束多目标优化的双归档集进化算法
16.DGEA
C. He, R. Cheng, and D. Yazdani, Adaptive offspring generation for evolutionary large-scale multiobjective optimization, IEEE Transactions on System, Man, and Cybernetics: Systems, 2020.进化大规模多目标优化的自适应后代生成
17.DMOEAeC
J. Chen, J. Li, and B. Xin, DMOEA-εC: Decomposition-based multiobjective evolutionary algorithm with the ε-constraint framework, IEEE Transactions on Evolutionary Computation, 2017, 21(5): 714-730.基于分解的多目标进化算法与ε约束框架
18.dMOPSO
S. Z. Martinez and C. A. Coello Coello, A multi-objective particle swarm optimizer based on decomposition, Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, 2011, 69-76.
19.DWU
G. Moreira and L. Paquete, Guiding under uniformity measure in the decision space, Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence, 2019.在决策空间的均匀性度量下进行指导
20.EAGMOEAD
X. Cai, Y. Li, Z. Fan, and Q. Zhang, An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 508-523.一种基于分解的外部归档集引导多目标进化算法
21.EFRRR
Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, Balancing convergence and diversity in decomposition-based many-objective optimizers, IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198. 基于分解的多目标优化器中的平衡收敛性和多样性
22.EIMEGO
D. Zhan, Y. Cheng, and J. Liu, Expected improvement matrix-based infill criteria for expensive multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2017, 21(6): 956-975.
23.eMOEA
K. Deb, M. Mohan, and S. Mishra, Towards a quick computation of well-spread Pareto-optimal solutions, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2003, 222-236.
24.EMyOC
R. Denysiuk, L. Costa, and I. E. Santo, Clustering-based selection for evolutionary many-objective optimization, Proceedings of the International Conference on Parallel Problem Solving from Nature, 2014,538-547.基于聚类选择的多目标优化算法
25.ENSMOEAD
S. Zhao, P. N. Suganthan, and Q. Zhang, Decomposition-based multi- objective evolutionary algorithm with an ensemble of neighborhood sizes, IEEE Transactions on Evolutionary Computation, 2012, 16(3): 442-446.基于分解的具有邻域大小集合的多目标进化算法
26.GDE3
S. Kukkonen and J. Lampinen, GDE3: The third evolution step of generalized differential evolution, Proceedings of the IEEE Congress on Evolutionary Computation, 2005, 443-450.
27.GFMMOEA
Y. Tian, X. Zhang, R. Cheng, C. He, and Y. Jin, Guiding evolutionary multi-objective optimization with generic front modeling, IEEE Transactions on Cybernetics, 2018.用通用前沿建模指导进化多目标优化
28.GLMO
H. Zille, Large-scale Multi-objective Optimisation: New Approaches and a Classification of the State-of-the-Art, PhD Thesis, Otto von Guericke University Magdeburg, 2019.新的方法和最先进的分类
29.gNSGAII
J. Molina, L. V. Santana, A .G. Hernandez-Diaz, C. A. Coello Coello, and R.Caballero, g-dominance: Reference point based dominance for multiobjective metaheuristics, European Journal of Operational Research,2009, 197(2): 685-692.基于参考点的多目标元启发式支配
30.GrEA
S. Yang, M. Li, X. Liu, and J. Zheng, A grid-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721-736.一种基于网格的多目标优化进化算法
31.hpaEA
H. Chen, Y. Tian, W. Pedrycz, G. Wu, R. Wang, and L. Wang, Hyperplane assisted evolutionary algorithm for many-objective optimization problems, IEEE Transactions on Cybernetics, 2019.多目标优化问题的超平面辅助进化算法
32.HypE
J. Bader and E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization, Evolutionary Computation, 2011, 19(1):45-76.一种基于快速超体积多目标优化的算法
33.IBEA
E. Zitzler and S. Kunzli, Indicator-based selection in multiobjective search, Proceedings of the International Conference on Parallel Problem Solving from Nature, 2004, 832-842.多目标搜索中基于指标的选择
34.IDBEA
M. Asafuddoula, T. Ray, and R. Sarker, A decomposition-based evolutionary algorithm for many objective optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(3): 445-460.一种基于多目标优化的分解的进化算法
35.IMMOEA
R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling, IEEE Transactions on Evolutionary Computation, 2015, 19(6): 838-856.一种基于高斯过程的逆建模多目标优化算法
36.ISIBEA
T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, An interactive simple indicator-based evolutionary algorithm (I-SIBEA) for multiobjective optimization problems, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2015, 277-291.一种基于交互简单指标的多目标优化问题进化算法
37.KnEA
X. Zhang, Y. Tian, and Y. Jin, A knee point-driven evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776.一种用于多目标优化的膝点驱动进化算法
38.KRVEA
T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, A surrogate- assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142.一种用于计算昂贵的多目标优化代理辅助参考向量引导的进化算法,
39.LCSA
H. Zille, Large-scale Multi-objective Optimisation: New Approaches and a Classification of the State-of-the-Art, PhD Thesis, Otto von Guericke University Magdeburg, 2019. 新的方法和最先进的分类
40.LMEA
X. Zhang, Y. Tian, R. Cheng, and Y. Jin, A decision variable clustering based evolutionary algorithm for large-scale many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018, 22(1): 97-112.一种基于决策变量聚类的大规模多目标优化进化算法
41.LMOCSO
Y. Tian, X. Zheng, X. Zhang, and Y. Jin, Efficient large-scale multi-objective optimization based on a competitive swarm optimizer, IEEE Transactions on Cybernetics, 2019.基于竞争群优化器的高效大规模多目标优化
42.LSMOF
C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao, Accelerating large-scale multi-objective optimization via problem reformulation, IEEE Transactions on Evolutionary Computation, 2019.通过问题重构加速大规模多目标优化
43.MaOEACSS
Z. He and G. G. Yen, Many-objective evolutionary algorithms based on coordinated selection strategy, IEEE Transactions on Evolutionary Computation, 2017, 21(2): 220-233.基于协调选择策略的多目标进化算法
44.MaOEADDFC
J. Cheng, G. G. Yen, and G. Zhang, A many-objective evolutionary algorithm with enhanced mating and environmental selections, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 592-605.一种具有增强交配和环境选择的多目标进化算法
45.MaOEAIGD
Y. Sun, G. G. Yen, and Z. Yi, IGD indicator-based evolutionary algorithm for many-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2018.基于IGD指标的多目标优化问题进化算法
46.MaOEAIT
Y. Sun, B. Xue, M. Zhang, G. G. Yen, A new two-stage evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2018.一种新的多目标优化两阶段进化算法
47.MaOEARD
Z. He and G. G. Yen, Many-objective evolutionary algorithm: Objective space reduction and diversity improvement, IEEE Transactions on Evolutionary Computation, 2016, 20(1): 145-160.目标空间减少和多样性改善
48.MESMO
S. Belakaria, A. Deshwal, J. R. Doppa, Max-value Entropy Search for Multi-Objective Bayesian Optimization, Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, 7825-7835.多目标贝叶斯优化的最大值熵搜索
49.MMOPSO
Q. Lin, J. Li, Z. Du, J. Chen, and Z. Ming, A novel multi-objective particle swarm optimization with multiple search strategies, European Journal of Operational Research, 2015, 247(3): 732-744.一种新的具有多种搜索策略的多目标粒子群算法
50.MOCell
A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, MOCell: A cellular genetic algorithm for multiobjective optimization, International Journal of Intelligent Systems, 2009, 24(7): 726-746.一种用于多目标优化的细胞遗传算法
51.MOCMA
C. Igel, N. Hansen, and S. Roth, Covariance matrix adaptation for multi- objective optimization, Evolutionary computation, 2007, 15(1): 1-28.协方差矩阵适应多目标优化
52.MOEAD
Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 2007,11(6): 712-731.一种基于分解的多目标进化算法
53.MOEADAWA
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, MOEA/D with adaptive weight adjustment, Evolutionary Computation, 2014, 22(2): 231-264.具有自适应权重调整、进化计算的MOEA/D
54.MOEADCMA
H. Li, Q. Zhang, and J. Deng, Biased multiobjective optimization and decomposition algorithm, IEEE Transactions on Cybernetics, 2017, 47(1): 52-66.
55.MOEADD
K. Li, K. Deb, Q. Zhang, and S. Kwong, An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Transactions Evolutionary Computation, 2015, 19(5): 694-716.一种基于支配和分解的进化多目标优化算法
56.MOEADDAE
K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, A constrained multi-objective evolutionary algorithm with detect-and-escape strategy, IEEE Transactions on Evolutionary Computation, 2020.一种具有检测逃逸策略的约束多目标进化算法
57.MOEADDE
H. Li and Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302.复杂帕累托集的多目标优化问题
58.MOEADDRA
Q. Zhang, W. Liu, and H. Li, The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances, Proceedings of the IEEE Congress on Evolutionary Computation, 2009, 203-208.
59.MOEADDU
Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, Balancing convergence and diversity in decomposition-based many-objective optimizers, IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198.基于分解的多目标优化器中的平衡收敛性和多样性
60.MOEADEGO
Q. Zhang, W. Liu, E. Tsang, and B. Virginas, Expensive multiobjective optimization by MOEA/D with Gaussian process model, IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474.
61.MOEADFRRMAB
K. Li, A. Fialho, S. Kwong, and Q. Zhang, Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 2014, 18(1): 114-130.基于分解的多目标进化算法的自适应算子选择
62.MOEADM2M
H. Liu, F. Gu, and Q. Zhang, Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Transactions on Evolutionary Computation, 2014, 18(3): 450-455.将多目标优化问题分解为多个简单的多目标子问题
63.MOEADMRDL
S. B. Gee, K. C. Tan, V. A. Shim, and N. R. Pal, Online diversity assessment in evolutionary multiobjective optimization: A geometrical perspective, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 542-559.进化多目标优化中的在线多样性评估
64.MOEADPaS
R. Wang, Q. Zhang, and T. Zhang, Decomposition-based algorithms using Pareto adaptive scalarizing methods, IEEE Transactions on Evolutionary Computation, 2016, 20(6): 821-837.
65.MOEADSTM
K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, Stable matching-based selection in evolutionary multiobjective optimization, IEEE Transactions on Evolutionary Computation, 2014, 18(6): 909-923.基于稳定匹配的进化多目标优化选择
66.MOEADURAW
L. R. C. Farias and A. F. R. Araujo, Many-objective evolutionary algorithm based on decomposition with random and adaptive weights. In Proceedings of the 2019 IEEE International Conference on Systems, Mans and Cybernetics.基于随机和自适应权值分解的多目标进化算法
67.MOEADVA
X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables, IEEE Transactions Evolutionary Computation, 2016, 20(2): 275-298.一种基于决策变量分析的大规模变量多目标优化问题的多目标进化算法
68.MOEAIGDNS
Y. Tian, X. Zhang, R. Cheng, and Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, Proceedings of the IEEE Congress on Evolutionary Computation, 2016,5222-5229.一种基于增强反世代距离度量的多目标进化算法
69.MOEAPC
R. Denysiuk, L. Costa, I. E. Santo, and J. C. Matos, MOEA/PC: Multiobjective evolutionary algorithm based on polar coordinates, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2015, 141-155.基于极坐标的多目标进化算法
70.MOEAPSL
Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, Solving large-scale multi-objective optimization problems with sparse optimal solutions via unsupervised neural networks, IEEE Transactions on Cybernetics, 2020.用稀疏最优解通过无监督神经网络求解大规模多目标优化问题
71.MOMBIII
R. Hernandez Gomez and C. A. Coello Coello, Improved metaheuristic based on the R2 indicator for many-objective optimization, Proceedings of the Annual Conference on Genetic and Evolutionary Computation, 2015, 679-686.基于R2指标的改进元启发式多目标优化
72.MOPSO
C. A. Coello Coello and M. S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, Proceedings of the IEEE Congress on Evolutionary Computation, 2002, 1051-1056.
73.MOPSOCD
C. R. Raquel and P. C. Naval Jr, An effective use of crowding distance in multiobjective particle swarm optimization, Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, 2005, 257-264.
74.MPAES
J. D. Knowles and D. W. Corne, M-PAES: A memetic algorithm for multiobjective optimization, Proceedings of the IEEE Congress on Evolutionary Computation, 2000, 325-332.
75.MPSOD
C. Dai, Y. Wang, and M. Ye, A new multi-objective particle swarm optimization algorithm based on decomposition, Information Sciences, 2015, 325: 541-557. 一种新的基于分解的多目标粒子群优化算法
76.MSEA
Y. Tian, C. He, R. Cheng, and X. Zhang, A multi-stage evolutionary algorithm for better diversity preservation in multi-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019.一种在多目标优化中更好地保持多样性的多级进化算法
77.MSOPSII
E. J. Hughes, MSOPS-II: A general-purpose many-objective optimiser, Proceedings of the IEEE Congress on Evolutionary Computation, 2007, 3944-3951.
78.MTS
L. Y. Tseng and C. Chen, Multiple trajectory search for unconstrained / constrained multi-objective optimization, Proceedings of the IEEE Congress on Evolutionary Computation, 2009, 1951-1958.多轨迹搜索无约束/约束多目标优化
79.MultiObjectiveEGO
R. Hussein, K. Deb, A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization, in: Proc. Genet. Evol. Comput. Conf. 2016, Denver, 2016: pp. 573?580.
80.MyODEMR
R. Denysiuk, L. Costa, and I. E. Santo, Many-objective optimization using differential evolution with variable-wise mutation restriction, Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, 591-598.
81.NMPSO
Q. Lin, S. Liu, Q. Zhu, C. Tang, R. Song, J. Chen, C. A. Coello Coello, K. Wong, and J. Zhang, Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2018, 22(1): 32-46.
82.NNIA
M. Gong, L. Jiao, H. Du, and L. Bo, Multiobjective immune algorithm with nondominated neighbor-based selection, Evolutionary Computation, 2008,16(2): 225-255.基于非主导邻域选择的多目标免疫算法
83.NSGAII
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
84.NSGAIIconflict
A. L. Jaimes, C. A. Coello Coello, H. Aguirre, and K. Tanaka, Objective space partitioning using conflict information for solving many-objective problems, Information Sciences, 2014, 268: 305-327.
85.NSGAIII
K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.一种基于参考点的非支配排序方法的进化多目标优化算法,第一部分:用盒约束求解问题
86.NSGAIISDR
Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin, A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization, IEEE Transactions on Evolutionary Computation,2018.考虑收敛和多样性的强化支配关系用于进化多目标优化
87.NSLS
B. Chen, W. Zeng, Y. Lin, and D. Zhang, A new local search-based multiobjective optimization algorithm, IEEE Transactions on Evolutionary Computation, 2015, 19(1): 50-73.一种新的基于局部搜索的多目标优化算法
88.onebyoneEA
Y. Liu, D. Gong, J. Sun, and Y. Jin, A many-objective evolutionary algorithm using a one-by-one selection strategy, IEEE Transactions on Cybernetics, 2017, 47(9): 2689-2702.一种使用一对一选择策略的多目标进化算法
89.OSP_NSDE
E. Guerrero-Pena, A. F. R. Araujo, Multi-objective evolutionary algorithm with prediction in the objective space, Information Sciences, 2019, 501: 293-316.目标空间预测的多目标进化算法
90.ParEGO
J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66.
91.PESAII
D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, PESA-II: Region-based selection in evolutionary multiobjective optimization, Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, 2001, 283-290.
92.PICEAg
R. Wang, R. C. P.urshouse, and P. J. Fleming, Preference-inspired coevolutionary algorithms for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2013, 17(4): 474-494多目标优化的偏好激励协同进化算法
93.PPS
Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, Push and pull search for solving constrained multi-objective optimization problems, Swarm and Evolutionary Computation, 2019, 44(2): 665-679.推拉搜索求解约束多目标优化问题
94.PREA
J. Yuan, H. Liu, F. Gu, Q. Zhang, and Z. He, Investigating the properties of indicators and an evolutionary many-objective algorithm based on a promising region, IEEE Transactions on Evolutionary Computation, 2020.研究了指标的性质和一种基于有前途区域的进化多目标算法
95.RMMEDA
Q. Zhang, A. Zhou, and Y. Jin, RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm, IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63.基于规则模型的分布算法多目标估计
96.rNSGAII
L. B. Said, S. Bechikh, and K. Ghedira, The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making, IEEE Transactions on Evolutionary Computation, 2010, 14(5): 801-818.
97.RPDNSGAII
M. Elarbi, S. Bechikh, A. Gupta, L. B. Said, and Y. S. Ong, A new decomposition-based NSGA-II for many-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 1191-1210.一种新的基于分解的NSGA-II多目标优化方法
98.RPEA
Y. Liu, D. Gong, X. Sun, and Y. Zhang, Many-objective evolutionary optimization based on reference points, Applied Soft Computing, 2017, 50: 344-355.基于参考点的多目标进化优化
99.RSEA
C. He, Y. Tian, Y. Jin, X. Zhang, and L. Pan, A radial space division based evolutionary algorithm for many-objective optimization, Applied Soft Computing, 2017, 61: 603-621.一种基于径向空间划分的多目标优化进化算法
100.RVEA
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.一种用于多目标优化的参考向量引导进化算法
101.RVEAa
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.一种用于多目标优化的参考向量引导进化算法
102.S3CMAES
H. Chen, R. Cheng, J. Wen, H. Li, and J. Weng, Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations, Information Sciences, 2018.用协方差矩阵自适应演化策略求解具有可扩展的小种群的大规模多目标优化问题
103.SCDAS
H. Sato, H. E. Aguirre, and K. Tanaka, Self-controlling dominance area of solutions in evolutionary many-objective optimization, Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, 2010, 455-465.
104.SIBEA
E. Zitzler, D. Brockhoff, and L. Thiele, The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2007, 862-876.
105.SIBEAkEMOSS
D. Brockhoff and E. Zitzler, Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods, Proceedings of the IEEE Congress on Evolutionary Computation, 2007, 2086-2093.
106.SMEA
H. Zhang, A. Zhou, S. Song, Q. Zhang, X. Gao, and J. Zhang, A self- organizing multiobjective evolutionary algorithm, IEEE Transactions on Evolutionary Computation, 2016, 20(5): 792-806.
107.SMPSO
A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna, and E. Alba, SMPSO: A new PSO-based metaheuristic for multi-objective optimization, Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 2009, 66-73.
108.SMSEGO
W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection, Proceedings of the International Conference on Parallel Problem Solving from Nature, 2008, 784-794.
109.SMSEMOA
M. Emmerich, N. Beume, and B. Naujoks, An EMO algorithm using the hypervolume measure as selection criterion, Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2005, 62-76.
110.SparseEA
Y. Tian, X. Zhang, C. Wang, and Y. Jin, An evolutionary algorithm for large-scale sparse multi-objective optimization problems, IEEE Transactions on Evolutionary Computation, 2019.大规模稀疏多目标优化问题的进化算法
111.SPEA2
E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength ,Pareto evolutionary algorithm, Proceedings of the Fifth Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2001, 95-100.
112.SPEA2SDE
M. Li, S. Yang, and X. Liu, Shift-based density estimation for Pareto-based algorithms in many-objective optimization, IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365.
113.SPEAR
S. Jiang and S. Yang, A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, IEEE Transactions on Evolutionary Computation, 2017, 21(3): 329-346.一种基于参考方向的多目标和多目标优化的强度帕累托进化算法
114.SRA
B.Li, K.Tang, J. Li, and X. Yao, Stochastic ranking algorithm for many-objective optimization based on multiple indicators, IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924-938.基于多指标的多目标优化随机排序算法
115.tDEA
Y. Yuan, H. Xu, B. Wang, and X. Yao, A new dominance relation-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2016, 20(1): 16-37.一种新的基于支配关系的多目标优化进化算法
116.TiGE_2
Y. Zhou, Z. Min, J. Wang, Z. Zhang, and J.Zhang, Tri-goal evolution framework for constrained many-objective optimization, IEEE Transactions on Systems Man and Cybernetics Systems, 2018.约束多目标优化的三目标演化框架
117.ToP
Z. Liu and Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces. IEEE Transactions on Evolutionary Computation, 2019.在决策空间和目标空间中处理约束多目标优化问题
118.Two_Arch2
H. Wang, L. Jiao, and X. Yao, Two_Arch2: An improved two-archive algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2015, 19(4): 524-541.一种改进的多目标优化双归档集算法
119.VaEA
Y. Xiang, Y. Zhou, M. Li, and Z. Chen, A vector angle-based evolutionary algorithm for unconstrained many-objective optimization, IEEE Transactions on Evolutionary Computation, 2017, 21(1): 131-152.一种基于向量角度的无约束多目标优化进化算法
120.WOF
H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, A framework for large-scale multiobjective optimization based on problem transformation, IEEE Transactions on Evolutionary Computation, 2018, 22(2): 260-275.基于问题变换的大规模多目标优化框架
121.WVMOEAP
X. Zhang, X. Jiang, and L. Zhang, A weight vector based multi-objective optimization algorithm with preference, Acta Electronica Sinica (Chinese), 2016, 44(11): 2639-2645.一种基于权值向量的多目标优化算法
标签:
相关推荐:
最新新闻:
- 如何成为一名优秀的产品经理?这四步很重要
- 天天简讯:userdata.dll丢失怎么办?解决方法来了
- 怎么设置excel2007冻结窗口?excel2007冻结窗口设置方法:环球热消息
- 天天快资讯丨欧几里德几何的多目标优化自适应进化算法——AGE-II
- 科技创新赋能美好出行 雅迪助力电动车行业高质量发展
- 天涯明月刀:1月第1批天涯合璧-数据互通(合服)即将启动-环球新资讯
- SIS与ESD、DCS、PLC,四者之间有什么关系?一文读懂SIS与DCS的关系:新动态
- 如何发布一个BT种子文件?2个步骤搞定
- 泛海微无线电动牙刷怎么样?无线充电电动牙刷技术介绍 天天讯息
- 《魔兽世界》所改编的网络游戏单机版 你玩过吗?
- 冬季家用洗碗机怎么样?家用洗碗机使用特点
- 徕卡镜头有哪些型号?徕卡镜头大全以及报价镜头 每日看点
- 世界速讯:java中的TCP是什么?如何进行通讯?
- 求生之路2怎么局域网联机?局域网联机方法详解
- 三星S5660手机配置怎么样?三星S5660如何设置时间和日期?
- 当前热门:多普达手机如何鉴别?多普达手机行货验证介绍
- 世界今亮点!QQ网络硬盘在哪?如何添加QQ界面?
- 对象优先在eden区分配内存吗?堆中分配内存的对象有哪些?
- 每日视讯:Sora套装 迪卡侬入门公路3949元
- 当前报道:如何设置默认浏览器?谷歌浏览器设置默认Tip流程
- 焦点速递!什么是SEM?SEM和SEM有什么区别?
- 世界短讯!【pycharm】1.8.0+cuda111的运行环境
- 599美元香吗?RTX4070价格泄露
- 今日热搜:华为g525可以刷鸿蒙系统吗?华为g525强刷官方rom系统的教程
- 戴尔笔记本电脑多少钱?戴尔笔记本电脑价格大全 热消息
- 环球快资讯:网站服务器如何防御ddos攻击?教你一招
- ChatGPT对手 Bard将大幅度升级_环球热点评
- 焦点快看:CSS文件中的中文字体名称怎么写?CSS常用的中文字体名称对照表
- 天天简讯:联想ThinkPad有哪些型号?联想ThinkPad各系列型号介绍
- 时讯:ppt中的控件工具箱——ShockwaveFlash
- 热推荐:动态语言:C、PHP、Perl、Ruby哪个更适合你?
- 安卓设备的USB周边和安卓USB配件如何调试?具体操作方法
- 每日短讯:什么是视频会议系统?视频会议的发展及标准有哪些?
- qq字体怎么设置?qq聊天字体设置教程-天天热议
- CCFL是什么?CCFL背光屏有哪些优缺点?|当前视讯
- 焦点热讯:iPhone5怎么升级ios7?8款苹果设备升级更新
- IUNI U3的手机系统是什么?IUNI U3能升级安卓4.3吗?
- 专业数字录音机价格是多少钱?买哪种品牌?|每日速读
- 驱动到底是什么?我们应该如何安装和更新驱动?
- 破发了!RTX 3060Ti史低价2899元-环球快播报
- 回南天除湿机12L只要479元-全球速看料
- 摄像机的焦距是什么意思?摄像机焦距对应距离介绍_微动态
- 互联网广告表现形式有哪些?一文读懂互联网广告分类及收费方式-焦点快看
- 笔记本电脑电池如何校准电量?教你一招
- 华为光纤猫指示灯有什么用?华为光纤猫指示灯功能介绍:全球新资讯
- 每日动态!解析ElasticSearch ElasticSearch字段类型解析
- 每日看点!CentOS怎么升级Proftpd?CentOS升级Proftpd教程
- 无线数字电视怎么搜台?无线数字电视搜台步骤介绍
- 今日热讯:联想thinkpadx200怎样装系统?五步装电脑
- 飞信登录PC客户端时无法正常登录怎么办?无法正常登录的原因及排查方法-微速讯
- 焦点简讯:【技术】空间光调制器与激光加工技术的应用介绍
- 【世界新视野】Windows生态系统:限制用户的应用程序
- 世界要闻:三极管进入截止区与饱和区的条件及制作方法
- 每日看点!CentOS怎么升级Proftpd?CentOS升级Proftpd教程
- 安卓设备的USB周边和安卓USB配件如何调试?具体操作方法
- ClamAV病毒扫描工具怎么安装?ClamAV3.扫描工具安装使用教程
- 每日动态!解析ElasticSearch ElasticSearch字段类型解析
- 世界短讯!【pycharm】1.8.0+cuda111的运行环境
- 索尼新蓝牙耳机曝光!售价120欧 满电续航20小时 环球观点
- 全球新消息丨愚人节整活:卡普空推出猫猫专用《街霸6》对战设备
- PS开始在家电领域与Xbox竞争 PS愚人节视频公开 环球头条
- 《原神》公布3.6版本「盛典与慧业」4月12日上线 看点
- 全球快看:凶不露齿!美国新研究显示霸王龙也有嘴唇
- 性能稳了!曝三星Galaxy S24系列存储将从256GB起步,内存从8GB提升至12GB|当前动态
- HyperX全新推出Cloud2O Hydration耳机 帮助玩家“随时补充水分”
- 极氪 009 迎来首次 OTA 升级,ZEEKR OS 3.6 更新来袭
- 每日快看:《师父》登Steam四天销量破5万份 好评率高达94%
- 【环球热闻】卡普空猫猫专用设备发布!速同猫猫在《街霸6》中PK
- Epic老板蒂姆·斯威尼:我讨厌游戏中的广告|世界热议
- 欲购从速!PlayStation次世代智能家电公布 当前头条
- 吉田修平:很想看到独立开发者对于生成AI技术的应用|天天热闻
- 最新:Xbox高管认为Game Pass业务不会颠覆行业模式
- 环球快看:《辐射4》高清材质包 提升画质的同时保留原版速度
- 《半条命:艾利克斯》无VR MOD最新版本发布-当前速讯
- 地板下面有水怎么处理:新要闻
- WWDC 2023定档:iPhone X惨被抛弃!_天天热文
- iPhone15 Pro颠覆了17年的设计
- 苹果MR头显无码组件曝光
- 原厂颗粒内存新低价99元!
- 贵州茅台日赚1.72亿元:超额完成任务 业绩增速创三年来新高:环球最资讯
- 全球微头条丨漫威《秘密入侵》新剧照:龙妈搭档妈惹法克侠
- 每日快报!旭辉控股:收到匿名信称对总额18亿元交易提出质疑,延期发布2022年业绩
- 没人来!主办方谈E3取消:厂商退出的挑战难以克服-时讯
- 天天资讯:芬尼科技IPO信披与工商信息“打架” 创始股东设立时股东究竟2人还是41人?
- 世嘉公布免费悬疑视觉小说《刺猬索尼克谋杀案》