您的当前位置:首页>新品 > 正文

全球视点!FFT是什么意思?FFT的详解

来源:CSDN 时间:2022-12-08 10:39:26

fft


(资料图)

快速傅里叶变换

语法

Y = fft(X)

Y = fft(X,n)

Y = fft(X,n,dim)

说明

示例

Y= fft(X)用快速傅里叶变换 (FFT) 算法计算 X的离散傅里叶变换 (DFT)。

如果 X是向量,则 fft(X)返回该向量的傅里叶变换。

如果 X是矩阵,则 fft(X)将 X的各列视为向量,并返回每列的傅里叶变换。

如果 X是一个多维数组,则 fft(X)将沿大小不等于 1 的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。

示例

Y= fft(X,n)返回 n点 DFT。如果未指定任何值,则 Y的大小与 X相同。

如果 X是向量且 X的长度小于 n,则为 X补上尾零以达到长度 n。

如果 X是向量且 X的长度大于 n,则对 X进行截断以达到长度 n。

如果 X是矩阵,则每列的处理与在向量情况下相同。

如果 X为多维数组,则大小不等于 1 的第一个数组维度的处理与在向量情况下相同。

示例

Y= fft(X,n,dim)返回沿维度 dim的傅里叶变换。例如,如果 X是矩阵,则 fft(X,n,2)返回每行的 n 点傅里叶变换。

示例

全部折叠

噪声信号

Try This Example

使用傅里叶变换求噪声中隐藏的信号的频率分量。

指定信号的参数,采样频率为 1 kHz,信号持续时间为 1.5 秒。

Fs = 1000;            % Sampling frequency                    T = 1/Fs;             % Sampling period       L = 1500;             % Length of signalt = (0:L-1)*T;        % Time vector

构造一个信号,其中包含幅值为 0.7 的 50 Hz 正弦量和幅值为 1 的 120 Hz 正弦量。

S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

用均值为零、方差为 4 的白噪声扰乱该信号。

X = S + 2*randn(size(t));

在时域中绘制噪声信号。通过查看信号 X(t)很难确定频率分量。

plot(1000*t(1:50),X(1:50))title("Signal Corrupted with Zero-Mean Random Noise")xlabel("t (milliseconds)")ylabel("X(t)")

计算信号的傅里叶变换。

Y = fft(X);

计算双侧频谱 P2。然后基于 P2和偶数信号长度 L计算单侧频谱 P1。

P2 = abs(Y/L);P1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);

定义频域 f并绘制单侧幅值频谱 P1。与预期相符,由于增加了噪声,幅值并不精确等于 0.7 和 1。一般情况下,较长的信号会产生更好的频率近似值。

f = Fs*(0:(L/2))/L;plot(f,P1) title("Single-Sided Amplitude Spectrum of X(t)")xlabel("f (Hz)")ylabel("|P1(f)|")

现在,采用原始的、未破坏信号的傅里叶变换并检索精确幅值 0.7 和 1.0。

Y = fft(S);P2 = abs(Y/L);P1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);plot(f,P1) title("Single-Sided Amplitude Spectrum of S(t)")xlabel("f (Hz)")ylabel("|P1(f)|")

高斯脉冲

Try This Example

将高斯脉冲从时域转换为频域。

定义信号参数和高斯脉冲 X。

Fs = 100;           % Sampling frequencyt = -0.5:1/Fs:0.5;  % Time vector L = length(t);      % Signal lengthX = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));

在时域中绘制脉冲。

plot(t,X)title("Gaussian Pulse in Time Domain")xlabel("Time (t)")ylabel("X(t)")

要使用 fft将信号转换为频域,首先从原始信号长度确定是下一个 2 次幂的新输入长度。这将用尾随零填充信号 X以改善 fft的性能。

n = 2^nextpow2(L);

将高斯脉冲转换为频域。

Y = fft(X,n);

定义频域并绘制唯一频率。

f = Fs*(0:(n/2))/n;P = abs(Y/n);plot(f,P(1:n/2+1)) title("Gaussian Pulse in Frequency Domain")xlabel("Frequency (f)")ylabel("|P(f)|")

余弦波

Try This Example

比较时域和频域中的余弦波。

指定信号的参数,采样频率为 1kHz,信号持续时间为 1 秒。

Fs = 1000;                    % Sampling frequencyT = 1/Fs;                     % Sampling periodL = 1000;                     % Length of signalt = (0:L-1)*T;                % Time vector

创建一个矩阵,其中每一行代表一个频率经过缩放的余弦波。结果 X为 3×1000 矩阵。第一行的波频为 50,第二行的波频为 150,第三行的波频为 300。

x1 = cos(2*pi*50*t);          % First row wavex2 = cos(2*pi*150*t);         % Second row wavex3 = cos(2*pi*300*t);         % Third row waveX = [x1; x2; x3];

在单个图窗中按顺序绘制 X的每行的前 100 个条目,并比较其频率。

for i = 1:3    subplot(3,1,i)    plot(t(1:100),X(i,1:100))    title(["Row ",num2str(i)," in the Time Domain"])end

出于算法性能的考虑,fft允许您用尾随零填充输入。在这种情况下,用零填充 X的每一行,以使每行的长度为比当前长度大的下一个最小的 2 的次幂值。使用 nextpow2函数定义新长度。

n = 2^nextpow2(L);

指定 dim参数沿 X的行(即对每个信号)使用 fft。

dim = 2;

计算信号的傅里叶变换。

Y = fft(X,n,dim);

计算每个信号的双侧频谱和单侧频谱。

P2 = abs(Y/L);P1 = P2(:,1:n/2+1);P1(:,2:end-1) = 2*P1(:,2:end-1);

在频域内,为单个图窗中的每一行绘制单侧幅值频谱。

for i=1:3    subplot(3,1,i)    plot(0:(Fs/n):(Fs/2-Fs/n),P1(i,1:n/2))    title(["Row ",num2str(i)," in the Frequency Domain"])end

输入参数

全部折叠

X- 输入数组 向量 | 矩阵 | 多维数组

输入数组,指定为向量、矩阵或多维数组。

如果 X为 0×0 空矩阵,则 fft(X)返回一个 0×0 空矩阵。

数据类型: double| single| int8| int16| int32| uint8| uint16| uint32| logical复数支持: 是

n- 变换长度[](默认) | 非负整数标量

变换长度,指定为 []或非负整数标量。为变换长度指定正整数标量可以提高 fft的性能。通常,长度指定为 2 的幂或可分解为小质数的乘积的值。如果 n小于信号的长度,则 fft忽略第 n个条目之后的剩余信号值,并返回截断的结果。如果 n为 0,则 fft返回空矩阵。

示例: n = 2^nextpow2(size(X,1))

数据类型: double| single| int8| int16| int32| uint8| uint16| uint32| logical

dim- 沿其运算的维度 正整数标量

沿其运算的维度,指定为正整数标量。如果未指定值,则默认值是大小不等于 1 的第一个数组维度。

fft(X,[],1)沿 X的各列进行运算,并返回每列的傅里叶变换。

fft(X,[],2)沿 X的各行进行运算,并返回每行的傅里叶变换。

如果 dim大于 ndims(X),则 fft(X,[],dim)返回 X。当指定 n时,fft(X,n,dim)将对 X进行填充或截断,以使维度 dim的长度为 n。

数据类型: double| single| int8| int16| int32| uint8| uint16| uint32| logical

输出参数

全部折叠

Y- 频域表示 向量 | 矩阵 | 多维数组

频域表示,以向量、矩阵或多维数组形式返回。

如果 X的类型为 single,则 fft本身以单精度进行计算,Y的类型也是 single。否则,Y以 double类型返回。

Y的大小如下:

对于 Y = fft(X)或 Y = fft(X,[],dim),Y的大小等于 X的大小。

对于 Y = fft(X,n,dim),size(Y,dim)的值等于 n,而所有其他维度的大小保持与在 X中相同。

如果 X为实数,则 Y是共轭对称的,且 Y中特征点的数量为 ceil((n+1)/2)。

数据类型: double| single

详细信息

向量的离散傅里叶变换

Y = fft(X)和 X = ifft(Y)分别实现傅里叶变换和逆傅里叶变换。对于长度 n的 X和 Y,这些变换定义如下:

Y(k)=nj=1X(j) W(j−1)(k−1)nX(j)=1nnk=1Y(k) Wn−(j−1)(k−1),

其中

Wn=e(−2πi)/n

为 n 次单位根之一。

提示

fft的执行时间取决于变换的长度。仅具有小质因数的变换长度的 fft 执行时间明显快于本身是质数或具有较大质因数的变换长度的 fft 执行时间。

对于大多数 n值,实数输入的 DFT 需要的计算时间大致是复数输入的 DFT 计算时间的一半。但是,当 n有较大的质因数时,速度很少有差别或没有差别。

使用工具函数 fftw可能会提高 fft的速度。此函数控制用于计算特殊大小和维度的 FFT 算法优化。

算法

FFT 函数(fft、fft2、fftn、ifft、ifft2、ifftn)基于一个称为 FFTW [1] [2] 的库。

参考

[1] FFTW (http://www.fftw.org)

[2] Frigo, M., and S. G. Johnson. “FFTW: An Adaptive Software Architecture for the FFT.” Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Vol. 3, 1998, pp. 1381-1384.

另请参阅

fft2| fftn| fftshift| fftw| ifft

主题

傅里叶变换

标签:

最新新闻:

新闻放送
Top